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Computer modelling of porous silicon formation
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Porous silicon formation has been simulated by the finite diffusion-length (FDL) model. This
considers a dynamic isoconcentration profile from which the aggregating particles begin

their random walks. In this paper we report on the isoconcentration profile non-uniformities
which increase as the finite diffusion length is increased. The implementation of the FDL

model with zero diffusion length generates non-fractal structures with a fractal dimension
close to 1. It is found that Eden clusters cannot be generated at zero diffusion length, due to
the problem of “sinking isoconcentration profile”. We conclude that these are limitations

that should be considered in the FDL model for improving the understanding of physical

phenomena such as formation and morphology of porous silicon.

1. Introduction
The observation of efficient visible photoluminescence
from porous silicon [ 1] has important implications for
materials research on silicon optoelectronics. In view
of this, many models to explain the mechanism of
formation of porous silicon are being investigated.
Electrochemical anodizing can lead to porous silicon
formation at lower current densities, while electro-
polishing occurs at higher current densities. Other
factors which influence porous silicon morphology
and formation are ambient light conditions, doping
type and concentration in the substrate material and
electrochemical anodization parameters. The origin of
photoluminescence is also not established and porous
silicon having morphological features of a few nano-
metres [2], as well as porous silicon having up to
1000-nm silicon columns have been shown to be
photoluminescent [3]. The observation of photo-
luminescence quenching by chemical treatments sug-
gests surface chemical species are very important for
photoluminescence [4]. Several explanations for the
preferential dissolution of silicon at the pore tips have
been suggested. Deposition of passivating silicates on
the pore walls [5] and depletion layer formation [6]
are the more accepted ones. These models do not
explain all the experimentally known features of por-
ous silicon formation. The finite diffusion length
(FDL) model has been suggested to be a successful
model for theoretical description of porous silicon
formation [7]. The nanostructured morphology of
porous silicon has similarities to computer simulated
patterns generated by the FDL model [8]. The
simulated patterns for small values of finite diffusion
length resemble the experimentally observed structure
of porous silicon formed on p-type silicon, while for
larger values of finite diffusion length the simulated
patterns are similar to the experimentally observed
porous silicon structures formed on n-type silicon.
The Eden and diffusion limited aggregation (DLA)
model are being investigated for describing growth of
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clusters and aggregation phenomena [9, 10]. Both of
these models describe non-equilibrium phenomena
and the rate controlling step of aggregation differenti-
ates between these modelS. The Eden model generates
compact clusters and relates to phenomena which are
surface reaction rate controlled, while the DLA model
describes diffusion rate limited phenomenon. The
FDL model has been suggested to be a more general-
ized model [11] by the incorporation of a finite and
variable diffusion length from which the particles be-
gin their random walk. This model considers a n-
dimensional random walk of a particle in the presence
of a concentration gradient. The time dependent diffu-
sion equation for the one-dimensional concentration
gradient is

3C(x,1)

L D52C(x,t)
ot 8x2

(1)

where, C(x,t) is the concentration, x is the distance
from the interface, ¢ is the time and D is the diffusion
coefficient, which is assumed to be independent of
concentration. The solution of the above differential
equation can be obtained under different boundary
conditions. If an infinite source of dopants diffusing
into an infinite region is considered, the solution is
given by

C(x,1) x

= 1 .
Co Do

2

where C, is the concentration in the surface region.
A diffusion length parameter L can be identified where
the concentration is essentially the bulk concentration

L = 3.6(Dt)? 3)

The parameter L describes an isoconcentration profile
from which there is equal probability to start a
particle on its random walk towards the cluster.
The mathematical equivalence between the spatial
diffusion and electric fields leads to similarity in the
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diffusion-based and depletion layer-based explanation
of phenomena such as porous silicon formation. The
equivalent of the diffusion length parameter L is the
Debye length in electrostatics.

In this paper we discuss the non-uniformities
present in the isoconcentration profile from which
particles are released in the FDL model. These non-
uniformities are observed even at small finite diffu-
sion lengths. The FDL model has been implemented
in the limit of zero finite diffusion length and the
results are compared with compact Eden clusters
generated by another algorithm.

2. Computer algorithm

Two algorithms have been used in this study: the first
is similar to the FDL model and the second is the
algorithm for generating Eden clusters. These models
require the availability of pseudo-random numbers
with good statistical properties. We have generated
these random numbers by the Tausworth shift gener-
ator [12] with modifications of Kirkpatrick and Stoll
[13]. This method generates random numbers by per-
forming an exclusive-OR operation (equivalent to ad-
dition in Galois field) on random numbers stored
in an array.

The details of the algorithm used for generating
constant density non-fractal structures are similar to
the description of the FDL model [7], though in our
implementation the finite diffusion length was meas-
ured from available peripheral sites rather than from
occupied sites. This has more physical meaning since
the diffusing particles would become part of the ag-
gregate on contacting an available peripheral site.
These details are discussed with reference to Fig. 1,

which illustrates the occupied sites, available sites and -

unavailable sites for a diffusing particle beginning its
random walk towards the cluster. The tree-like bran-
ched structures formed by the FDL simulations are
similar to the pores in the morphology of porous
silicon. In the case of porous silicon formation diffu-
sion is considered to limit the necessary reactants in
the bulk of silicon from reaching the growing pore.
Since the anodic dissolution of silicon requires the
presence of holes, they can be considered to be the
necessary diffusion limited species. Though such an
assumption is not required and any diffusion-limited
rate controlling reactant particle can be considered to
be the necessary species. The details of the algorithm
are:

1. The silicon—electrolyte surface width was taken as
100 lattice units. All the locations on the first row of
the lattice were considered as potential sites.

2. The lattice was arranged in a horizontal “wrap
around” configuration. This is important for generat-
ing uniform clusters.

3. The growth of porous silicon was simulated by
releasing a particle from a distance of predetermined
finite diffusion length L from the silicon—electrolyte
interface.

4. The set of all the lattice points at a vertical distance
of L from the available peripheral sites of the growing
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Figure I Illustration of aggregation pattern generated by the FDL
algorithm. The finite diffusion length was chosen to be 10. The
clusters grow from top to bottom. * occupied sites; - unoccupied
sites; + permitted sites; * forbidden sites; # particle position.

aggregate were termed as the “isoconcentration pro-
file”. The farthest peripheral site was chosen when
more than one peripheral site was in consideration.
5. The starting location of the particle was chosen at
random from the set of all the available lattice points
on the isoconcentration profile.

6. The particles then executed a random walk on this
two-dimensional lattice. If a peripheral site was en-
countered during the random walk, this site was occu-
pied and became part of the growing aggregate. If the
occupied site was not in the interior of porous struc-
ture, then the isoconcentration profile was extended
by one lattice unit. If the particle wandered away to
more than twice the diffusion length from the iso-
concentration profile, the random walk of the particle
was terminated without any effect on the aggregates.
Another particle was then released.

7. This process of release of particles from random
locations from the isoconcentration profile was con-
tinued till 1000 to 10000 particles were added to the
aggregate.

The results of the implementation of this algorithm,
taking the finite diffusion length as 10 lattice units, are
shown in Fig. 1. The occupied lattice positions are
shown by . Note that the centre of the * is shifted up
by half line spacing. The unoccupied lattice points
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within the porous structure and contained by the
isoconcentration profile are marked by . . The region
shown by + extends 2 x 10 lattice units from the
isoconcentration profile into the unoccupied lattice.
The particle released from the isoconcentration profile
is permitted to execute its random walk within the
region marked by . or + . If a peripheral site (these are
unoccupied sites around * and are also marked .) is
encountered, it is occupied. The unoccupied lattice is
represented by the symbol “ . If the randomly walking
particle encounters a "~ the walk is terminated and
a new particle is released. The symbol # shows the
position of a particle that is about to be released.

The algorithm for generating Eden clusters is differ-
ent from the above description and the main points
are listed below:

1. The lattice size was 100x 150, but no “wrap
around” was implemented in this lattice.

2. The first row of the lattice was stored in an array
of potential sites. The location to be occupied was
chosen randomly from this array. The unoccupied
peripheral sites were added to this array (avoiding
duplication), while the occupied site was removed
from the array. The next site to be occupied was again
chosen randomly from the sites stored in the array.
This procedure was repeated until a large aggregate is
formed.

This procedure is slightly different from the more
established Eden algorithm where the starting site is at
the centre of the lattice and the aggregate is away from
the edges. In our case we start with all the surface sites
as the potential starting locations so that a closer
representation of porous silicon formation beginning
from silicon—electrolyte interface can be achieved.
This choice of potential starting sites also allows com-
parison with the FDL model in the limit of zero finite
diffusion length.

3. Results and discussion

The generation of porous structure by the FDL model
is dependent on the processes of random selection of
particle release site on the isoconcentration profile
and the nature of the random walk of the particles.
The other factor is the magnitude of the finite diffusion
length which also decides the morphology and the
density of the resultant patterns, and it is this para-
meter which can be selected before starting the simula-
tion. The qualitative description of porous silicon
growth by this simulation model can be obtained by
studying the random motion of the particles in the
lattice after being released from the isoconcentration
profile. As the particle begins its random walk towards
the aggregate, it is more likely to contact an available
peripheral site that is near the tip of the growing
aggregate. These sites near the tip have a much higher
probability of occupation compared to sites that are
deep within the porous structure. The porous silicon
structure is then characterized by an “active zone”,
where a large number of particles contact an unoc-
cupied peripheral site and a “frozen zone”, which is the
constant porosity region behind the active zone. The
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morphology of the stable porous silicon structure is
decided in the active zone. Hence, the width of the
active region is an important parameter and can be
measured by techniques that have been reported pre-
viously [11].

The structure of aggregates generated by our simu-
lations of the FDL model are shown in Fig. 2(a—e).
These patterns are generated for finite diffusion
lengths of 0, 2, 5, 10 and 20. The patterns are filamen-
tary in nature and appear to occupy the lattice uni-
formly. The isoconcentration profile in all cases is
non-uniform. In several cases “abrupt discontinuities”,
which are a few columns wide and many rows long,
are present. The presence of such discontinuities does
not appear representative of physical phenomenon
such as porous silicon formation and seems to be
a limitation of the FDL model. A qualitative explana-
tion for the presence of non-uniformities is that
the release of particles from random locations on the
dynamic isoconcentration profile and their
subsequent random walk to the aggregate, promotes
clustering near the aggregate tip, which leads to
formation of valleys that are more difficult to fill. In
extreme cases the non-uniformities can be narrow and
sharp and have been called “abrupt discontinuities”.
Fig. 3 shows the compact structure that is formed on
implementing the Eden algorithm. Note that the
occupied lattice sites are shown by *, which displaced
up by half a lattice unit. Due to this the top portion of
the * overlaps with . , the symbol for the unoccupied
lattice site of the upper row. The appearance of com-
pact Eden cluster in Fig. 3 is clearly different from
Fig. 2(a), which shows patterns generated for zero
finite diffusion length and suggests that the FDL
model cannot generate such compact clusters and
hence cannot be considered as a generalized model
which incorporates both the Eden and the DLA
model. Fig. 4 shows the density profiles for the pat-
terns in Fig. 2. The computation of the density was
performed by using the scaling relationship for con-
stant density structures [11]

NY = Wpx )

where N is taken as the total number of particles
contained at a distance x. The parameter W is the
lattice width, p is the density and x is measured
from the silicon—electrolyte interface. The parameter
v = 1/D where D is the fractal dimension. The density
profiles shown in Fig. 4 are for finite diffusion lengths
of 0, 2, 5, 10 and 20. The region of constant density
is towards the middle portion of each curve and
corresponds to the “frozen zone” of constant porosity
in porous silicon formation. The interface at surface
shows higher density, which is due to the high lattice
occupancy in this region because of the planar starting
profile. As the aggregate starts growing the probabil-
ity of further growth near the tips increases causing
shadowing of lattice sites in the interior. Thus the
site occupancy. for each row declines resulting in
a lower constant density region. The value of the
constant density decreases as the finite diffusion
length is increased. This suggests that at larger finite
diffusion lengths the occupation of sites near the tips is
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Figure 2 Aggregation patterns generated with a finite diffusion
length of () 0, (b} 2, (c) 5, (d) 10, (¢) 20. The clusters grow from top to

bottom.

preferred, leading to growth at the tips and resulting in
a lower site occupancy for each row. The patterns
shown in Fig. 2(a—e) illustrate this by the increase in
the vacant unoccupied sites between the growing ag-
gregates, as the finite diffusion length is increased.
The density profile for the zero finite diffusion
length is very similar to the plots for other finite
diffusion lengths. This curve is higher than curves for
other diffusion lengths showing that there are more
aggregating particles at each distance in this case. The
value of the constant density is near 0.5 and clearly the
corresponding pattern in Fig. 2(a) is not an Eden
cluster. The formation of these clusters is shown by
implementing the Eden algorithm. These results are
shown in Fig. 3. To explain the differences in the
morphology of Fig. 2(a) and Fig. 3, we compare the
algorithms used in generating them. The FDL
algorithm starts by considering all the locations of the
first row as potential sites for occupation. Hence, in
the case of zero finite diffusion length the starting
isoconcentration profile is planar and contains all the
sites in the first row. When the random location is
selected on the isoconcentration profile, this location
is immediately occupied and the isoconcentration
profile is pushed down by one lattice unit. As the
growth continues the occupied sites can shield some
available sites. Since the isoconcentration profile is the
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Figure 3 Pattern formed by implementing the Eden algorithm. The
clusters grow from top to bottom.
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Figure 4 Density versus distance curves for finite diffusion lengths
of )0, (+)2, ()5, (A) 10 and (x) 20.

set of all the sites which are one lattice unit below
farthest occupied sites (i.e. at a distance of zero lattice
units below the farthest available peripheral site), the
shielded locations are no longer in the set of sites on
the isoconcentration profile. These locations have no
chance of being occupied, since in the zero finite
diffusion length condition no possibility of diffusing to
an interior location exists and a selected site is
considered immediately occupied. We call this the
problem of “sinking isoconcentration profile”. This is



the reason for the rarefied patterns seen in Fig. 2(a). In
the case of Eden algorithm the set of initial available
sites is the first row. These are stored in an array of
potential sites. After the first site is occupied, all the
unoccupied peripheral sites of the just occupied site
are also stored in the array of potential sites, while the
site that has just been occupied is removed from this
array. As a result even the unoccupied sites that have
been surrounded from all sides by occupied sites
remain on this array of potential sites. Clearly the
array of potential sites in the Eden algorithm is not the
same as the isoconcentration profile in the FDL
algorithm. The formation of compact clusters by the
Eden algorithm is because the array of potential sites
does not have the problem equivalent of “sinking
isoconcentration profile” that is inherent in the FDL
model.

The density—density correlation function [14, 15]
for the structures generated by DLA and other similar
models is given by

o + nplr)y ~ 1P )

where p is the density, d is the space dimension and
D is the Hausdorff dimension. The plot of number of
aggregating particles versus distance is expected to
be linear on a double log scale. The results shown in
Fig. 5 are plots of log, (number of particles) versus
log. (distance) for the five chosen diffusion lengths.
The constant density regions of plots in Fig. 4 corres-
pond to the central regions of constant non-zero slope
on the double log plots. The slope is in the range
1 + 0.1, in agreement with Smith and Collins [11],
and corresponds to the “frozen zone” in the case of
porous silicon formation. The curve for zero finite
diffusion length is very interesting. It shows similar
features to the curves having non-zero finite diffusion
lengths, the curve for zero finite diffusion length is the
result of a single stochastic process, while the curves
for all other non-zero finite diffusion lengths are the
outcome of two stochastic processes. These are the
random selection of sites on the isoconcentration
profile and the random motion of particles in the
lattice. We suggest that the frozen zone slope
deviations of the curves for non-zero finite diffusion

x4+ O

OBk

4 ] 1 L 1 1

Log, { number of aggregating particles)

Log, ( distance )

Figure 5 Log, (number of particles) versus log, (distance) curves for
the finite diffusion lengths of ((J) 0, ( + ) 2, () 5, (A) 10 and (x) 20.

lengths compared to the curve for zero finite diffusion
length are due to the effect of particle diffusion in the
lattice. The difference in the number of particles at the
same distance inside the frozen zone is because all the
released particles find available sites for occupation in
the case of zero finite diffusion length condition, while
for all non-zero finite diffusion lengths some particles
may not reach the growing aggregate at all.

4. Conclusions

We have described the details of implementation of
the FDL algorithm on a 100 x 150 lattice. The results
for all the finite diffusion lengths show that the isocon-
centration profile is non-uniform and these non-uni-
formities increase with the finite diffusion length. In
several cases abrupt discontinuities are present in the
isoconcentration profile. The density profiles for all
the finite diffusion lengths show similar features. The
constant density portion in these curves corresponds
to the frozen zone of the porous structure. The double
log plots show that the slope in the frozen zone is
nearly equal to 1. The clusters that are generated by
the FDL algorithm for zero finite diffusion length
condition are not found to be compact and the reason
for this is suggested to be due to “sinking isoconcen-
tration profile”. The Eden algorithm has also been
implemented and has been shown to generate com-
pact clusters. The differences between the two algo-
rithms have been discussed.

In view of our results we conclude that the FDL
model cannot be considered to be a generalized model
of aggregation, which can generate Eden clusters in
the limit of zero finite diffusion length. The presence of
abrupt discontinuities in the isoconcentration profile
of several simulations of the FDL model appears to be
a limitation of the model in describing physical
phenomena such as porous silicon formation.
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